Roll No.

Y - 3185 (A)

M.A./M.Sc. (Mathematics) (Fourth Semester) (SPECIAL)

EXAMINATION, August 2021

(SECOND CHANCE)

Paper - 410

ADVANCED MATHEMATICAL STATISTICS

Time: Three Hours

Maximum Marks : 85 (For Regular Students)Minimum Pass Marks : 29Maximum Marks : 100 (For Private Students)Minimum Pass Marks : 34

Note—Attempt *all* questions.

and

1. Fit an exponential curve of the form $y = ab^x$ to the following data— 17/20

$\boldsymbol{\mathcal{X}}$	\mathcal{Y}
1	1
2	1.2
3	1.8
4	2.5
5	3.6
6	4.7
7	6.6
8	9.1

2. Write probability density function of normal distribution. Show that for normal distribution

$$\mu_{2n} = \sigma^2 (2n - 1)\mu_{2n-2}$$

$$\mu_{2n} = 1.3.5....(2n - 1)\sigma^{2n}$$
17/20

3. Let T_1 and T_2 be unbiased estimator of $\gamma(\theta)$ with efficiencies e_1 and e_2 respectively and $\rho = \rho_{\theta}$ be the correlation coefficient between them. Prove that— 17/20

$$\sqrt{e_1e_2} - \sqrt{(1-e_1)(1-e_2)} \le \rho \le \sqrt{e_1e_2} + \sqrt{(1-e_1)(1-e_2)}$$
.

4. Define F-distribution. Prove that for F-distribution—

17/20

$$\mu_{r}' = \left(\frac{v_{2}}{v_{1}}\right)^{r} \frac{\left[\frac{v_{1}}{2} + r \right] \frac{v_{2}}{2} - r}{\left[\frac{v_{1}}{2} \right] \frac{v_{2}}{2}}$$

Also obtain its mean and variance.

5. The varieties A, B, C, D of wheat were sown in 4 plots each and the following yields in quintals per acre were obtained:

17/20

A 8 4 6 7
B 7 5 5 3
C 2 5 4 4

Test the significance of difference between the yields of the varieties. Given that 5% tabulated value of F for 2 and 9 degrees of freedom is 4.26.